Caltech Home > BBE Home > Courses
open search form
Up to All Courses for 2019-20 Show Filters

Chemistry (Ch) Courses (2019-20)

Bi/Ch 110. Introduction to Biochemistry. 12 units (4-0-8): first term. Lectures and recitation introducing the molecular basis of life processes, with emphasis on the structure and function of proteins. Topics will include the derivation of protein structure from the information inherent in a genome, biological catalysis, and the intermediary metabolism that provides energy to an organism. Instructor: Clemons.
Bi/Ch 111. Biochemistry of Gene Expression. 12 units (4-0-8): second term. Lectures and recitation on the molecular basis of biological structure and function. Emphasizes the storage, transmission, and expression of genetic information in cells. Specific topics include DNA replication, recombination, repair and mutagenesis, transcription, RNA processing, and protein synthesis. Instructors: Campbell, Parker.
Ch/BMB 129. Introduction to Biophotonics. 9 units (3-0-6): first term. This course will cover basic optics and introduce modern optical spectroscopy principles and microscopy techniques. Topics include molecular spectroscopy; linear and nonlinear florescence microscopy; Raman spectroscopy; coherent microscopy; single-molecule spectroscopy; and super-resolution imaging. Not offered 2019-20. Instructor: Wei.
BMB/Bi/Ch 170. Biochemistry and Biophysics of Macromolecules and Molecular Assemblies. 9 units (3-0-6): first term. Detailed analysis of the structures of the four classes of biological molecules and the forces that shape them. Introduction to molecular biological and visualization techniques. Not offered in 2019-20.
BMB/Bi/Ch 173. Biophysical/Structural Methods. 9 units (3-0-6): second term. Basic principles of modern biophysical and structural methods used to interrogate macromolecules from the atomic to cellular levels, including light and electron microscopy, X-ray crystallography, NMR spectroscopy, single molecule techniques, circular dichroism, surface plasmon resonance, mass spectrometry, and molecular dynamics and systems biological simulations. Instructors: Clemons, Jensen, and other guest lectures.
BMB/Bi/Ch 174. Advanced Topics in Biochemistry and Biophysics. 6 units (3-0-3): first term. Discussion of research fields in biochemistry and molecular biophysics at Caltech. Instructors: Clemons, Hoelz, Shan and various guest lecturers.
BMB/Ch 178. Macromolecular Function: Kinetics, Energetics, and Mechanisms. 9 units (3-0-6): second term. Discussion of the energetic principles and molecular mechanisms that underlie enzyme's catalytic proficiency and exquisite specificity. Principles of allosteric regulation, selectivity, and enzyme evolution. Practical kinetics sections discuss how to infer molecular mechanisms from rate/equilibrium measurements and their application to more complex biological systems, including steady-state and pre-steadystate kinetics, kinetic simulations, and kinetics at the single molecule resolution. Instructor: Shan.
BMB/Ch 202 abc. Biochemistry Seminar Course. 1 unit: first, second, third terms. A course that includes a seminar on selected topics from outside faculty on recent advances in biochemistry. Students will participate in the seminar along with a formal discussion section with visiting faculty. Students will meet with the Biochemistry seminar speaker in the discussion section for an hour, and then attend the Biochemistry seminar at 4 p.m. BMB Seminars take place 1-2 times per month (usually on Thursdays).
BMB/Ch 230. Macromolecular Structure Determination with Modern X-ray Crystallography Methods. 12 units (2-4-6): third term. Advanced course in macromolecular crystallography integrating lecture and laboratory treatment of diffraction theory, crystallization (proteins, nucleic acids and macromolecular complexes), crystal characterization, X-ray sources and optics, crystal freezing, X-ray diffraction data collection (in-house and synchrotron), data reduction, multiple isomorphous replacement, single- and multi-wavelength anomalous diffraction phasing techniques, molecular replacement, electron density interpretation, structure refinement, structure validation, coordinate deposition and structure presentation. In the laboratory component, one or more proteins will be crystallized and the structure(s) determined by several methods, in parallel with lectures on the theory and discussions of the techniques Instructor: Hoelz.
Ch/Bi 253. Advanced Topics in Biochemistry. 6 units (2-0-4): third term. Hours and units to be arranged. Content will vary from year to year; topics are chosen according to the interests of students and staff. Not offered 2019-20.
Bi/BE/Ch/ChE/Ge 269. Integrative Projects in Microbial Science and Engineering. 6 units (3-0-3): second term. A project-based course designed to train students to integrate biological, chemical, physical and engineering tools into innovative microbiology research. Students and faculty will brainstorm to identify several "grand challenges" in microbiology. Small teams, comprised of students from different graduate programs and disciplinary backgrounds (e.g. a chemical engineer, a computer scientist and a biologist) and a faculty member, will work to compose a project proposal addressing one of the grand challenges, integrating tools and concepts from across disciplines. Student groups will present draft proposals and receive questions and critiques from other members of the class at check-in points during the academic term. While there will not be an experimental laboratory component, project teams may tour facilities or take field trips to help define the aims and approaches of their projects. At the end of the course, teams will deliver written proposals and presentations that will be critiqued by students and faculty. Instructor: CEMI Faculty.